Harnessing Natural Processes:

Effective strategies for reclamation of drastically disturbed sites

David Polster, M.Sc. R.P.Bio.
Polster Environmental Services Ltd.

Universal Soil Loss Equation X = RKSLCP

Where:

X = the computed soil loss in tons (dry weight) per acre from a given storm period

R = the rainfall erosion index

K = the soil erodibility index

S = the slope gradient factor

L = the slope length factor

C = the cropping (vegetation) factor

P = erosion control practice factor

Treatment C value
Fall rye 0.1
Sod 0.01
Permanent seeding (90%) 0.01
Wood fibre mulch 0.1
Fibre matting 0.02

During a heavy rain, as much as 100 tons/acre of soil can be lifted in the air ready for erosion...

Rill erosion

Action: Prevent / control flows
How:

- Armour gully channels
- Slow velocities (non-living)
- Bioengineering

NOTE: Matting not effective for sheet, rill or gully erosion as the erosion may occur under the matting.

Action: Depends on source of movement

How:

- Need to develop specific solutions to specific problems

So we have seen a drop in the number of alder trees over the years...

...but the cover has gone up over the years.

I hope this has given you some ideas about the ways that natural processes can be used to cost-effectively solve some challenging restoration problems